

Plane geometry I

TITLE: PLANE GEOMETRY

Introduction:

These worksheets were created within the Erasmus + project, Eurogebra.

Worksheets are in the field of mathematics and use the Geogebra program for individual mathematical tasks. The purpose is to use the program when teaching and explaining problems in mathematics and thus to approach the issue more clearly.

Worksheets are in the form of specific instructions and tools that will guide us to solve various tasks. In this way, students will get closer to a better understanding and modification of the given examples. Individual groups of worksheets can be combined with each other and create new subgroups according to the issues discussed. Some examples are followed by the solution of examples and free sheets for student notes.

Worksheets respect pedagogical documents related to the subject of mathematics. When working with worksheets, it is necessary to cooperate with teachers and coordinate their work.

In terms of content, we focused on geometric examples, where you can effectively solve problems and modify them in various ways. By formulating the tasks, we lead the students to understand the assigned tasks and to solve the tasks according to the individual steps in the worksheets.

ANGLE WITH TANGENT

MENU	TOOL	PROCESS STEPS
$\overline{\odot}$	Circle with Centre and Radius	Draw a circle with centre A and given radius - for example: 4
• ^A	Point on Object	Create points <i>B</i> and <i>C</i> somewhere on the circle
	🥕 Segment	Draw a segement between points <i>B</i> and <i>C</i>
	🥕 Segment	Draw a segement between points A and B
+	Perpendicular Line	Draw a line perpendicular to segment <i>AB,</i> going through the point <i>B</i>
• ^A	Point on Object	Create a point <i>D</i> on the line drawn in the previous step, on that side of segment <i>AB</i> where the point <i>C</i> is.
	\land Angle	Insert an angle between points <i>D,B</i> and <i>C</i> . In settings choose <i>Angle between: 0°</i> <i>and 180°</i> .
• ^A	Point on Object	Create a point <i>E</i> somewhere on the circle
	Þ Polygon	Draw a polygon <i>B,E,C</i>

	Angle	Insert an angle between points <i>B</i> , <i>E</i> and <i>C</i> . In settings choose <i>Angle between: 0°</i> <i>and 180°</i> .
• A	Point on Object	Insert a point F on the tangent but NOT on the ray BD
*	Angle	Insert an angle between points <i>F</i> , <i>B</i> and <i>C</i> . In settings choose <i>Angle between: 0°</i> <i>and 180°</i> .
		In settings of α angle go to <i>advanced</i> tab and in <i>Conditions to Show Object</i> type in $\alpha = \beta$
		In settings of γ angle go to <i>advanced</i> tab and in <i>Conditions to Show Object</i> type in $\alpha \neq \beta$

Angle between a tangent and a chord of a circle

CENTRE OF A CIRCLE

Find the centre of a circle given three points on that circle

MENU	TOOL	PROCESS STEPS
\bigcirc	Circle through 3 Points	Construct a circle through three points
	Segment	Draw a line segment that passes through point A and B (chord AB)
X	Segment	Draw a line segment that passes through point B and C (chord BC)
+	Perpendicular Bisector	Construct theperpendicular bisector of AB
+	Perpendicular Bisector	Construct theperpendicular bisector of BC
A •	Intersect	Define the point D formed bythe intersection of the two perpendicular bisectors(point D is the centre of the circle)

It works by joining two pairs of points to create two chords. The perpendicular bisector of each chord chords always passes through the center of the circle. By this method we find the centre.

CEVA THEOREM

MENU	TOOL	PROCESS STEPS
Polygon	Construct the triangle ABC	
• ^A Point	 Create point D on the segment BC Create point E on the segment AC 	
Segment	Create the segment ADCreate the segment BE	
Intersect	Create the intersection point F from segments AD and BE	
Ray	Create the CF ray	
>> Intersect	Create the intersection point G from segments AB and ray CF	
Segment	 Create segment BD (=i) Create segment DC (=j) Create segment EC (=k) Create segment EA (=l) Create segmentGA (=m) Create segmentGB (=n) 	
	Go to Algebra section and type $\frac{i}{j} \cdot \frac{k}{\ell} \cdot \frac{m}{n}$ (=d)	

LINE SEGMENT

DRAW A LINE (SEGMENT) THAT BISECTS THE GIVEN ANGLE

MENU	TOOL	PROCESS STEPS
		B C
\odot	• Circle with Centre through Point	Draw a circle with center B
• ^A	Intersect	Define the points that formed with intersection of circle and segments(E and F points)
\bigcirc	Compasses	Drawtwo circles with radius equal to length BE or BFand E and F-centered
• ^A	Intersect	Define the points that formed with intersection of circles that E and F- centered (G points)
•	Line Line	Connect G and B points with the "Line" tool.
	🔬 Angle	Check the anglesCBG andGBA

LINE SEGMENT

MENU	TOOL	PROCESS STEPS
*	Line .	Draw a line. Pick arbitrary points A and B on this line.
	Point on Object	
•	• A Point	Get a C point on the line (not between A and B)
\bigcirc	Compasses	Construct a circle with center C with radius equal to length of AB
•	Intersect	Define the point that formed with intersection of circle and AB segment with the intersection tool (D point)
	Distance or Length	Check the line segments AB and CD

LINE THROUGH POINTS

DRAW A LINE (SEGMENT) PERPENDICULAR TO THE GIVEN LINE GOING THROUGH POINT C

MENU	TOOL	PROCESS STEPS
		• C
$\overline{\bullet}$	• Circle with Centre through Point	Draw the circle with the center point C and cutting the line at two points.
•	Intersect	Define the points that formed with intersection of circle and line with the intersection tool (E and F points)
\odot	Compasses	Drawtwo circles with radius equal to lengthEC or FC and center D and E
•	Intersect	Define the points that formed with intersection of D and E circles with the intersection tool (C and G points)
and a	Segment	ConnectC and G points with the "Segment" tool
•	Intersect	Define the points that formed with intersection of segments with the intersection tool (H point)
	\land Angle	Check the angle CHE or FHC

MENELAOS THEOREM

MENU	TOOL	PROCESS STEPS
Polygon	Construct the triangle ABC	
Angle Bisector	Create the angle bisector of the angle A	
Intersect	Create the intersection point D from Bisector A and segment(BC)	
Ray	Create the CB ray and then the point Z on it, outside the segment BC	
Angle Bisector	Create the bisector of the angle ZBA.	
Ray	Create the CA ray	
→ Intersect	Create the intersect point E between ray CA and bisector of the ZBA angle	
Angle Bisector	Create the bisector of the angle BAC.	
→ Intersect	Create the intersect point F between segment AB and bisector of the BAC angle	

Segment	 Create segment BD (=k) Create segment DC (=l) Create segment EC (=m) Create segment EA (=n) Create segment FA (=p) Create segment FB (=q) 	
	Go to Algebra section and type $\frac{k}{\ell} \cdot \frac{m}{n} \cdot \frac{p}{q}$ (=d)	
ABC Text	Go to Geometry section and Text button and type: Text B I see Later forma We(ED)P(0) Vac(EC)(FA) Vac(FA)(FB)=Vac(V (frac{BD}DC) · \frac{EC}{EA} · \frac{FA}{FB}= k \{ 1 } · \frac{m \{ n } · \frac{p } q }= d	
	What you can say as a result about the position of the points E,F,D ?	

POINTS IN LINES

MENU	TOOL	PROCESS STEPS
*	Line	Draw a line that pass through point A (AC line)
ł	Parallel Line	Draw a parallel line to AC that pass through point B (BD line)
\odot	 Circle with Centre and Radius 	Construct a circle with radius equal to 3 and center A
\bigcirc	• Circle with Centre and Radius	Construct a circle with radius equal to 5 and center B
• ^A	Intersect	Define the points that formed with intersection of circles and lines with the intersect tool (E and F points)
~	Line	Combine E and F points with the "Line" tool.
•	Intersect	Define the points that formed with intersection of AB and EF lines with the intersect tool (G point)
cm 🖌	Distance or Length	Check the length GA and GB line segments

TRIANGLE AREAS

Compare triangle areas with the same base and different apex point

MENU	TOOL	PROCESS STEPS
 	Segment	Draw a segment
• ^A	Point	Draw a point outsidethesegmentsline
-	ParallelLine	Clickthe point and the segment to draw a parallelline to the segment
	Polygon	Successivelyselectthethreepointswhichwillbethevertices of the triangle. Then, clickthefirst point again in order to closethe triangle.
cm ²	Area	Point the triangle shape and you get thearea of the triangle
• ^A	Point	Draw a point on theline ,different to thefirst point
	Polygon	Successivelyselectthe new point on theline and theothertwopoints at the base and the new point again to createanother triangle
cm ²	Area	Clicktheshape of the new triangle to get thearea
R	Move	Click on thelast point to change theshape of thelasttrangle. Whatdidyousee?

TRIANGLE

Find the circumcentre and the circumcircle of a triangle

MENU	TOOL	PROCESS STEPS
		C B
\odot	 Circle with Centre and Radius 	Construct a circle with radius equal to AB and centre A
\odot	 Circle with Centre and Radius 	Construct a circle with radius equal to AB and centre B
•	Intersect	Define the points formed by the intersection the two circles (D and E points)
<u>_</u>	Line Line	Connect D and E points with the "Line" tool.
\odot	 Circle with Centre and Radius 	Construct a circle with radius equal to AC and centre A
\odot	 Circle with Centre and Radius 	Construct a circle with radius equal to AC and centre C
•	X Intersect	Define the points formed by the intersection the two circles (F and G points)
	Line	Connect F and G points with the "Line" tool.

• ^A	Intersect	Define the point formed by the intersection the two lines (point H). This is the circumcentre.
\bigcirc	Circle with Centre and Radius	Construct a circle with radius equal to AH and center H. This is the circumcircle.