



# 3D Geometry Quadratic (In)Equations





#### Introduction:

These worksheets were created within the Erasmus + project, Eurogebra.

Worksheets are in the field of mathematics and use the Geogebra program for individual mathematical tasks. The purpose is to use the program when teaching and explaining problems in mathematics and thus to approach the issue more clearly. Worksheets are in the form of specific instructions and tools that will guide us to solve various tasks. In this way, students will get closer to a better understanding and modification of the given examples. Individual groups of worksheets can be combined with each other and create new subgroups according to the issues discussed. Some examples are followed by the solution of examples and free sheets for student notes.

Worksheets respect pedagogical documents related to the subject of mathematics. When working with worksheets, it is necessary to cooperate with teachers and coordinate their work.

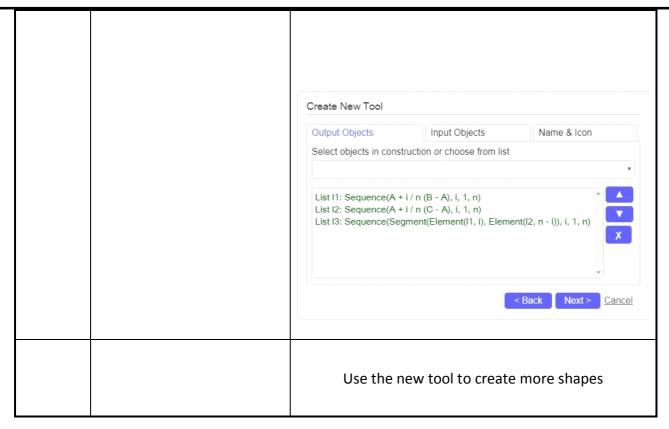
In terms of content, we focused on geometric examples, where you can effectively solve problems and modify them in various ways. By formulating the tasks, we lead the students to understand the assigned tasks and to solve the tasks according to the individual steps in the worksheets.

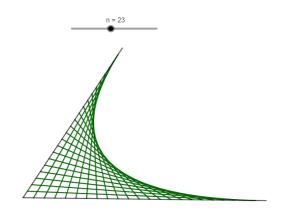




# **BEZIER CURVE**

| MENU | TOOL       | PROCESS STEPS                                                                                                                         |
|------|------------|---------------------------------------------------------------------------------------------------------------------------------------|
|      |            | In Settings set Labelling to All New Objects                                                                                          |
|      | ✓ Segment  | Create a segment AB (a)                                                                                                               |
|      | ✓ Segment  | Create a segment AC (b)                                                                                                               |
| a=2  | a=2 Slider | Create a slider <i>n</i> MIN: 0, MAX 50, Increment: 1                                                                                 |
|      |            | In the input bar type:  Sequence(A+i/n * (B-A),i,1,n)                                                                                 |
|      |            | This will create a list of $n$ points on the AB segment.<br>The distance between each point is exactly $1/n *$ length of $a$ .        |
|      |            | In the input bar type:  Sequence(A+i/n * (C-A),i,1,n)                                                                                 |
|      |            | This will create a list of <i>n</i> points on the AC segment.  The distance between each point is exactly 1/n *  length of <i>b</i> . |
|      |            | Hide both lists of points                                                                                                             |
|      |            | Create a list of segments: Sequence(Segment(Element(I1,i),Element(I2,n-i)),i,1,n)                                                     |
|      |            | These segments will connect i-th element of I1 list                                                                                   |




| with (n-i)-th element of I2 list                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------|
| You can move points A, B and C to change the shape of the Bezier Curve. Use the slider to change the number of segments. |
| Hide the lebels of segments and points.                                                                                  |
| Create a new tool called <i>Bézier Curve</i> Choose all the <i>lists</i> as <i>Output objects</i> .                      |
| File                                                                                                                     |
| Edit                                                                                                                     |
| Perspectives                                                                                                             |
| ★ View                                                                                                                   |
| Settings                                                                                                                 |
| % Tools                                                                                                                  |
| * Customise Toolbar                                                                                                      |
| Create New Tool                                                                                                          |
| ☆ Manage Tools                                                                                                           |
| Help & Feedback                                                                                                          |
| o-∃ Sign in                                                                                                              |
| <u>1.</u>                                                                                                                |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |















# **CARTESIAN EQUATION OF A PLANE**

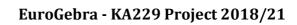
| MENU | TOOL                                                  | PROCESS STEPS                                                                                                                            |
|------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| a=1  | Create four sliders                                   | Create four sliders a, b, c and d . The slider will default to a range of -5 to 5.                                                       |
|      |                                                       | Type ax+by+c=d in the algebra view window                                                                                                |
| a=1  | Create three sliders                                  | Create three sliders d ,f and g . The slider will default to a range of –5 to 5.  Do not use e as Geogebra thinks it is the Euler number |
|      | Plot a 3D coordinate point in the algebra view        | Type (d,f,g) in the algebra view window                                                                                                  |
|      | Click on the parallel plane icon on the geometry menu | Select point D and the plane(A,B,C)                                                                                                      |
|      |                                                       |                                                                                                                                          |
|      |                                                       |                                                                                                                                          |
|      |                                                       |                                                                                                                                          |
|      |                                                       |                                                                                                                                          |





| "solution image" |  |
|------------------|--|
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |

#### Questions:


- 1. Write down the cartesian equation of a plane tha passes through the origin. Generalise your observation. Will be of the form n1x+n2y+n3z=0
- 2. Write down the cartesian equation of a plane that is parallel to plane p. Generalise your observation. Will have the same n1,n2,n3 values but will not equal to the same number.





# MIN AND MAX VALUES OF A QUADRATIC FUNCTION IN A GIVEN INTERVAL

| MENU  | TOOL       | PROCESS STEPS                                                                                                                                                         |
|-------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |            | For this task it is recommended to use both<br>Graphics and Graphics 2 views. One for the<br>sliders, dynamic texts, check boxes etc. and<br>the other for the graph. |
| a=2   | a=2 Slider | Insert sliders a,b and c:<br>MIN: -5, MAX: 5, increment 0.1                                                                                                           |
|       | Input      | In the input bar type in:<br>f(x) = ax <sup>2</sup> +bx+c                                                                                                             |
|       | Input      | In the input bar type in:<br>g(x)=Polynomial(f)                                                                                                                       |
| a = 2 | ABC Text   | Insert text: Set the extremities of the closed interval:                                                                                                              |
| a = 2 | a=2 Slider | Insert slider d:<br>MIN: -10, MAX: 10, increment 0.1                                                                                                                  |
| a=2   | a=2 Slider | Insert slider <i>e</i> :<br>MIN: <i>d</i> +0.1, MAX: 10, krok 0.1                                                                                                     |
|       | Input      | In the input bar type in:<br>eq1: x=d                                                                                                                                 |
|       | Input      | In the input bar type in:<br>eq2: x= <i>e</i>                                                                                                                         |





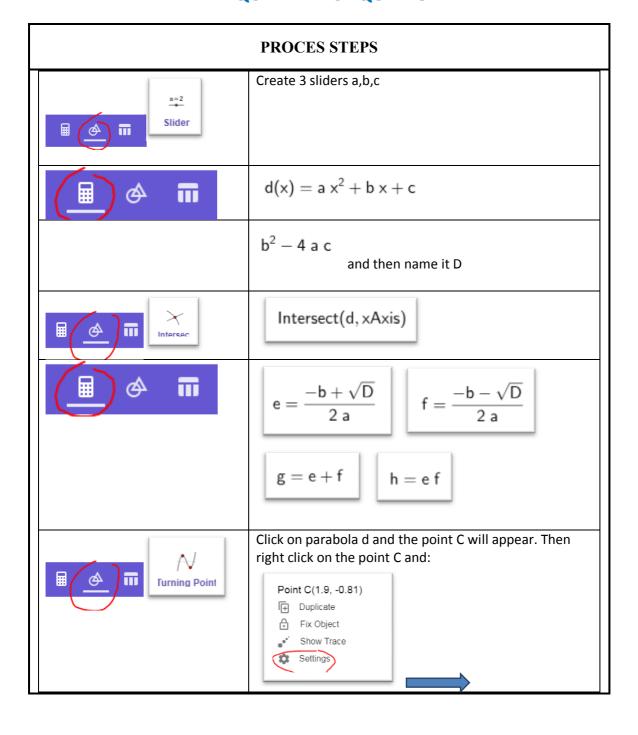
|       | Input    | In the input bar type in: A = Intersect(g, eq1)                                |
|-------|----------|--------------------------------------------------------------------------------|
|       | Input    | In the input bar type in: B = Intersect(g, eq2)                                |
|       | Input    | In the input bar type in:<br>C = MIN(g,d,e)                                    |
|       | Input    | In the input bar type in:<br>D = MAX(g,d,e)                                    |
|       | Input    | In the input bar type in: $p=-rac{b}{2a}$                                     |
|       | Input    | In the input bar type in:<br>q = f(p)                                          |
|       | Input    | In the input bar type in:<br>k = f(d)                                          |
|       | Input    | In the input bar type in:<br>m = f(e)                                          |
|       | Input    | In the input bar type in:<br>W = (p,q)                                         |
|       | Input    | In the input bar type in:<br>y_max = If(d≤p≤e, Max(k, Max(m,q)),<br>Max(k,m))  |
|       | Input    | In the input bar type in:<br>y_min = If (d≤p≤e, Min(k, Min(m,q)),<br>Min(k,m)) |
| a = 2 | ABC Text | Insert dynamic text:  f( d )= k f( e )= m                                      |





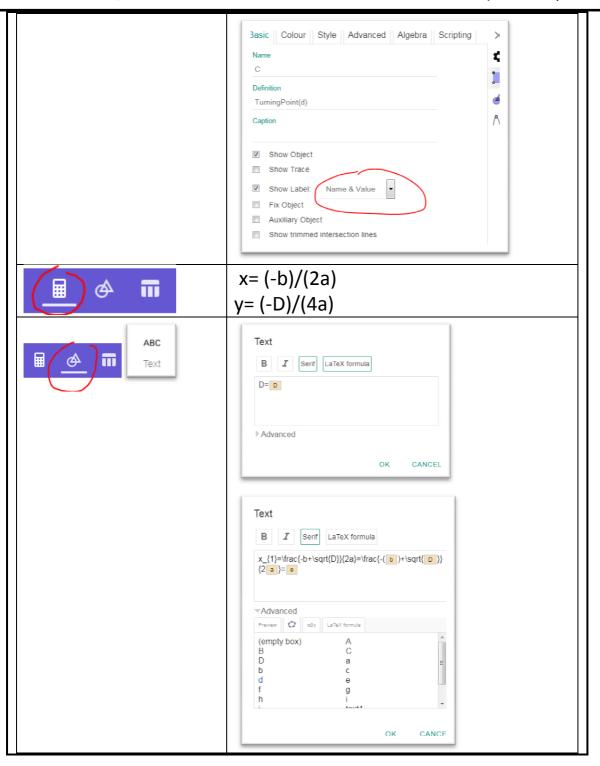
| a=2 | ☑ Check Box | Insert a check box: Function value at the ends of the interval:, which will show/hide the dynamic text from the previous step |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------|
| a=2 | ABC Text    | Insert dynamic text: $W = (p; q)$ Set a condition to show this object: $i \land a \neq 0$                                     |
| a=2 | ☑ Check Box | Insert a check box: Vertex of a parabola:,<br>which will show/hide the dynamic text from<br>the previous step                 |
| a=2 | ABC Text    | Insert dynamic text:  y_{min}= y_{min}                                                                                        |
| a=2 | ☑ Check Box | Insert a check box: MIN and MAX values in given interval:, which will show/hide the dynamic text from the previous step       |
| a=2 | ABC Text    | Insert text: <i>no vertex</i> Set a condition to show this object: $i \land a \stackrel{?}{=} 0$                              |
| a=2 | ABC Text    | Insert dynamic text:                                                                                                          |
| a=2 | ABC Text    | Insert dynamic text: $f(x) = g$                                                                                               |
| a=2 | ABC Text    | Insert dynamic text:<br>x ∈ < d ; e >                                                                                         |
| a=2 | ABC Text    | Insert text: Set the parameters of the quadratic function:                                                                    |
|     | Input       | In the input bar type in: z(x) = If (d≤x≤e, g(x)) Set a condition to show this object: j                                      |










# **QUADRATIC EQUATION**



















| Text  B                                                                            |
|------------------------------------------------------------------------------------|
| WAdvanced  Previous O OPY LaTeX formula  (empty box) A B C D a b c c d e f g h i i |
| OK CANCEL                                                                          |
|                                                                                    |





# EUROGEBRA WORKSHEET QUADRATIC EQUATIONS

| MENU                                                                                                | TOOL                                                                                                                         | PROCESS STEPS                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                     | Write in the input cell the function $x^2$ " to create the curve f.  The curves' name is parabola.  "the $y = x^2$ parabola" |                                                                                                                          |  |
| a=2                                                                                                 | a=2 Slider                                                                                                                   | Cilck on the geogebra board to define a slider "a", set min = - 5 and max = 5.                                           |  |
|                                                                                                     | Write in the input cell the function $_{\it w}$ a·x $^{\it 2}$ " to create the curve g.                                      |                                                                                                                          |  |
| Left click on the " a" slider's dot and move it , to see the relation between the two curves.       |                                                                                                                              |                                                                                                                          |  |
| • <sup>A</sup>                                                                                      | Intersect                                                                                                                    | Click on the g curve and the x'x axis to see the intersection point A.  The A point is the extreme point of the parable. |  |
| 1st task                                                                                            | 1st task: What is the solution of the equation ax² = 0, a ≠ 0.  (show the solution in the graph)                             |                                                                                                                          |  |
| a=2                                                                                                 | a=2 Slider                                                                                                                   | Cilck on the geogebra board to define a slider "c", set min = - 5 and max = 5.                                           |  |
| Write in the input cell the function $_{\prime\prime}$ a·x <sup>2</sup> + c" to create the curve h. |                                                                                                                              |                                                                                                                          |  |
| Left click on the "c" slider's dot and move it , to see the relation between the g and h curves.    |                                                                                                                              |                                                                                                                          |  |






| A              | Intersect                                                                                                                            | Click on the h curve and the x'x axis to see the intersection points B and C.  Then click again the h parable and the y'y axis to create the D point which is the extreme point of the h parable. |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ı              | Notice that , if a > 0, then the extreme point if a < 0, then the extreme point A an                                                 | •                                                                                                                                                                                                 |  |
| 2nd task       | (show the solution in t                                                                                                              |                                                                                                                                                                                                   |  |
| a=2            | a=2 Slider                                                                                                                           | Cilck on the geogebra board to define a slider "b", set min = - 5 and max = 5.                                                                                                                    |  |
| write          | You can delete the first two parables and write in the input cell the function $\pi \cdot x^2 + bx + c^2$ to create the new curve f. |                                                                                                                                                                                                   |  |
| • <sup>A</sup> | Intersect                                                                                                                            | Click on the f parable and the x'x axis to see the intersection point A and E.                                                                                                                    |  |
|                | te in the input cell the coordinates "(-b/2a,<br>nt appears on the f parable and this point<br>parable f.                            |                                                                                                                                                                                                   |  |
|                |                                                                                                                                      |                                                                                                                                                                                                   |  |

3rd task: What is the solution of the equation  $ax^2 + bx + c = 0$ ,  $a \ne 0$ . (show the solution in the graph)











# **SHOW THE SOLUTIONS TO A QUADRATIC INEQUALITY**

| MENU | TOOL       | PROCESS STEPS                                          |
|------|------------|--------------------------------------------------------|
| a=2  | a=2 Slider | Create a slider for the variable "a" between -5 and 5. |
| a=2  | a=2 Slider | Create a slider for the variable "b" between -5 and 5. |
| +    | Input      | Input the equation " $y = (x - a)(x - b)$ ".           |
| +    | Input      | Input the inequality " $0 > (x - a)(x - b)$ ".         |
| +    | Input      | Input the inequality " $0 < (x - a)(x - b)$ ".         |
|      |            |                                                        |
|      |            |                                                        |







#### **QUADRATIC INEQUALITIES**

| MENU | TOOL       | PROCESS STEPS                                                                  |
|------|------------|--------------------------------------------------------------------------------|
| a=2  | a=2 Slider | Cilck on the geogebra board to define a slider "a", set min = - 5 and max = 5. |
| a=2  | a=2 Slider | Cilck on the geogebra board to define a slider "b", set min = - 5 and max = 5. |
| a=2  | a=2 Slider | Cilck on the geogebra board to define a slider "c", set min = - 5 and max = 5. |

Write in the input cell the function  $u \cdot x^2 + bx + c''$  to create the parabola f.

Move the sliders so that the parabola f intersects the x Axis





Click on the f parabola and the x'x axis to see the intersection points A and B.

Write in the input cell, the inequality  $_{\prime\prime}$  f(x) > 0  $^{\prime\prime}$  . Then "enter" and the set "d" appears on the left column.

Write in the input cell ", if (d, 0)" to color the x Axis section that solves the inequality.

1st task: What is the solution of the inequality  $x^2 - 4x + 3 > 0$ . (show the solution in the graph)



Write in the input cell, the inequality  $_{''}f(x) < 0$  ". Then "enter" and the set "e" appears on the left column.

Write in the input cell "if (e, 0)" to color the x Axis section that solves the inequality . (use different color, from the settings, for the "e" set)

2nd task: What is the solution of the inequality  $-x^2 + 5x - 6 < 0$ .

(show the solution in the graph)

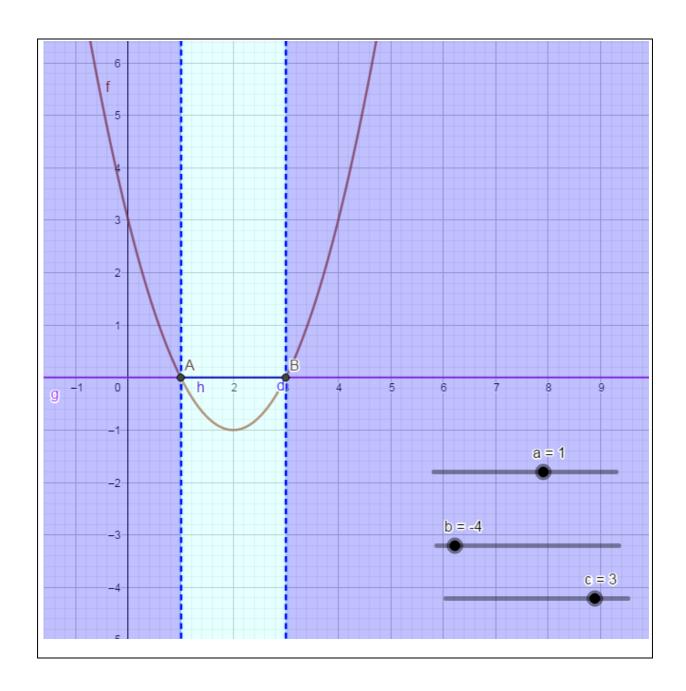
3rd task: What is the solution of the inequality  $2x^2 + 4x + 2 > 0$ .

(show the solution in the graph)

**4th task:** What is the solution of the inequality  $-x^2 - x - 1 \ge 0$ .

(show the solution in the graph)

5th task: What is the solution of the inequality  $x^2 - 4 > 0$ .


(show the solution in the graph)

6th task: What is the solution of the inequality  $-2x^2 \le 0$ .

(show the solution in the graph)

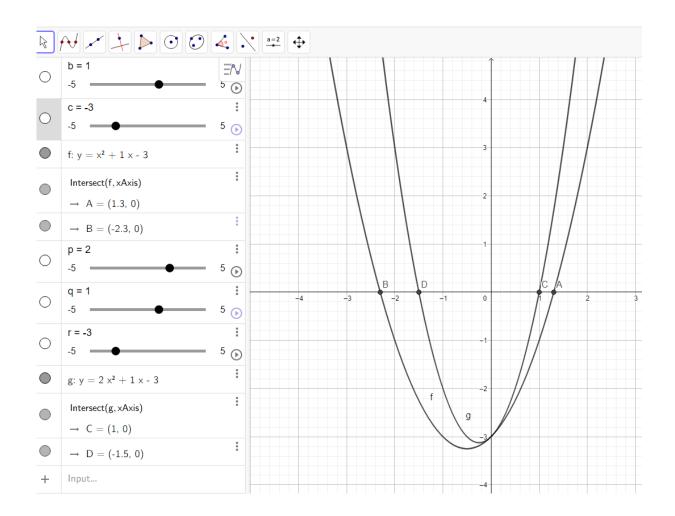











# **TITLE: Roots of quadratics**

| MENU | TOOL                          | PROCESS<br>STEPS                                            |
|------|-------------------------------|-------------------------------------------------------------|
|      |                               | In the input bar<br>enter<br>y=x^2+bx+c                     |
|      | Find the roots of an equation | Click on the roots<br>button                                |
|      |                               | Change the values of b and c and answer the questions below |
|      |                               | In the input bar<br>enter<br>y=px^2+qx+r                    |
|      | Find the roots of an equation | Click on the roots<br>button                                |
|      |                               |                                                             |



#### Questions:

- 1. Add the roots of the equation. Do you notice a link between the roots and b? Add the roots together and negate your answer. This will be the value of b.
- 2. Multiply the roots together. Do you notice a link between the roots and c? Multiply the roots together and this will be the value of c.
- 3. Change values of b and c. Are the links still valid? Yes
- 4. Generalise your observations. The sum of the roots equals -b and the product of the roots equals c
- 5. Can you see the connections when you use  $y=px^2+qx+r$ ? Generalise your observations The sum of the roots equals -q/p whilst the product of the roots equals r/p

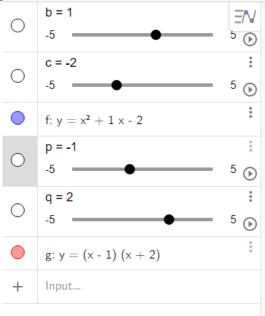


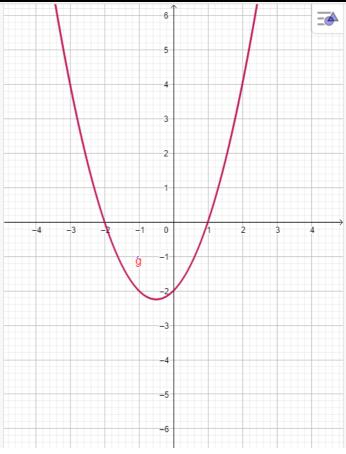




# **ROOTS OF FUNCTIONS**

| MEN<br>U | TOOL                                       |                                                   | PROCES<br>S STEPS                                                                                                          |
|----------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|          |                                            |                                                   | In the input bar enter y=x^2+bx +c                                                                                         |
|          | f: $y = x^2 + 1 \times + 0.1$ p = 1  -5  5 | Special Points  Duplicate input  Delete  Settings | Change the colour of the function by clicking on the three dots and going to settings In the input bar enter y=(x+p)(x+ q) |
|          | Input Dug                                  | ecial Points<br>olicate input                     | Change the colour of the function by clicking on the three dots and going to settings                                      |




#### Questions:

- 1. Set b=1 and c=-2 by moving the slider. What is the equation of the function? $y=x^2+1x-2$
- 2. Set p=-1 and q=2 by moving the slider. What is the equation of the function?y=(x-1)(x+2)
- 3. The two graphs will now coincide. What does this tell you about the two equations? They are the same. When you expand the brackets the equation will be the same as 1.
- 4. The roots of a quadratic equation are where the graph crosses the x-axis. This gives a y value of 0. How is this linked to the values of p and q above? If you know where they cross the x axis you can work out p and q. This will give a y value of 0.
- 5. Is there a relationship so that two graphs will always be the same even though you change the values?Yes if you know where they cross the x axis you can work out p and q. You can then expand to find the equation in the form x²+bx+c.
- 6. Can you have a quadratic equation without any roots? Yes the graph would not cross the x axis based on the previous definition
- 7. The answer to question 6 is no. How can this be true? I did not realise you can use complex numbers to represent roots of an equation.











# **SHOW THE SOLUTIONS TO A QUADRATIC INEQUALITY**

| MENU | TOOL       | PROCESS STEPS                                          |
|------|------------|--------------------------------------------------------|
| a=2  | a=2 Slider | Create a slider for the variable "a" between -5 and 5. |
| a=2  | a=2 Slider | Create a slider for the variable "b" between -5 and 5. |
| +    | Input      | Input the equation " $y = (x - a)(x - b)$ ".           |
| +    | Input      | Input the inequality " $0 > (x - a)(x - b)$ ".         |
| +    | Input      | Input the inequality " $0 < (x - a)(x - b)$ ".         |
|      |            |                                                        |
|      |            |                                                        |
|      |            |                                                        |
|      |            |                                                        |









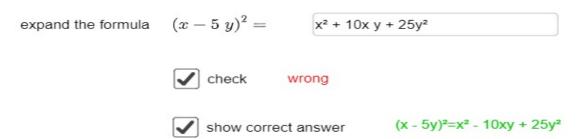
# **SHORT MULTIPLICATION FORMULAS**

| MENU | TOOL | PROCESS STEPS                                                                                            |
|------|------|----------------------------------------------------------------------------------------------------------|
|      |      | In the <i>Graphics</i> view hide the grid and both axes                                                  |
|      |      | Open the CAS panel                                                                                       |
|      |      | ♠ View                                                                                                   |
|      |      | ^√                                                                                                       |
|      |      | ■x= CAS                                                                                                  |
|      |      | In the CAS panel type in:  a: = RandomBetween(1,10)                                                      |
|      |      | In the CAS panel type in: b: = RandomElement({1,2,3,4,5,6,7,8,9,10,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10})      |
|      |      | In the <i>CAS</i> panel type in: <i>GCD(a,b)</i> Note: GCD - greatest common divisor                     |
|      |      | In the <i>CAS</i> panel type in: Factorise $\left(\left(\frac{a}{\$3}x + \frac{b}{\$3}y\right)^2\right)$ |
|      |      | In the CAS panel type in: $f(x,y):=\$4$                                                                  |
|      |      | In the CAS panel type in: $G(x,y)$ : = 0                                                                 |
|      |      | In the CAS panel type in:  Expand(\$4)                                                                   |





| a=2   | ABC Text      | Insert text:<br>Square of a sum or square of a difference                                                                         |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| a=2   | ABC Text      | Insert text: Expand the formula                                                                                                   |
| a=2   | a=1 Input Box | Create an input box Caption: formula Linked object: g(x,y)=0 Hide the label.                                                      |
|       |               | In the <i>Input bar</i> type in:<br>text3 = if(f≠g,"wrong","good job!")                                                           |
| a = 2 | ABC Text      | Insert a dynamic text (text4)  \$4=  Note: use the (empty box) function  Text  B / Serif LaTeX formula  \$4 =   Advanced  Preview |
| a=2   | ABC Text      | Insert a dynamic text (text5)<br>\$4=\$7<br>Note: use the <i>(empty box)</i> function again                                       |
| a=2   | ☑ Check Box   | Insert check box c: Caption: check Object: text3                                                                                  |
| a=2   | ☑ Check Box   | Insert check box d: Caption: Show correct answer Object: text5                                                                    |






|       |           | Go to Settings of this object->Advanced, in Condition to show object type in: $f \neq g \land c$     |
|-------|-----------|------------------------------------------------------------------------------------------------------|
|       |           | Insert a button: Caption: new example GeoGebra script: UpdateConstruction() c=false d=false g(x,y)=0 |
|       |           | Button                                                                                               |
|       |           | Caption: are of a sum or square of a difference                                                      |
|       |           | new example                                                                                          |
| a = 2 | OK Button | GeoGebra Script:                                                                                     |
|       |           | UpdateConstruction() c=false d=false g(x,y)=0                                                        |
|       |           | ew example OK Cancel                                                                                 |

# **End result:**

#### Square of a sum or square of a difference



new example