

Plane geometry III

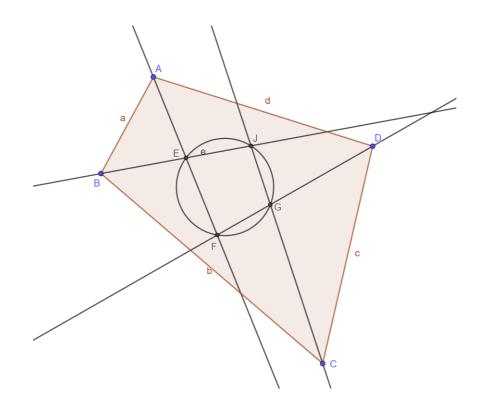
TITLE: PLANE GEOMETRY

Introduction:

These worksheets were created within the Erasmus + project, Eurogebra.

Worksheets are in the field of mathematics and use the Geogebra program for individual mathematical tasks. The purpose is to use the program when teaching and explaining problems in mathematics and thus to approach the issue more clearly. Worksheets are in the form of specific instructions and tools that will guide us to solve various tasks. In this way, students will get closer to a better understanding and modification of the given examples. Individual groups of worksheets can be combined with each other and create new subgroups according to the issues discussed. Some examples are followed by the solution of examples and free sheets for student notes.

Worksheets respect pedagogical documents related to the subject of mathematics. When working with worksheets, it is necessary to cooperate with teachers and coordinate their work.


In terms of content, we focused on geometric examples, where you can effectively solve problems and modify them in various ways. By formulating the tasks, we lead the students to understand the assigned tasks and to solve the tasks according to the individual steps in the worksheets.

THE BISECTORS OF ANY QUADRILATERAL FORM A QUADRILATERAL INSCRIBED IN A CIRCLE

MENU	TOOL	PROCESS STEPS
	> Polygon	Draw a random quadrilateral ABCD
+	Angle Bisector	Construct angle bisector lines from vertex A,B,C and D
• ^A	Intersect	Mark the intersections of every two angle bisector lineswith letters E,F,G,J
\odot	Circle through 3 Points	Click on any 3 vertex of the quadrilateral EFGJ and see that it is inscribed in a circle.

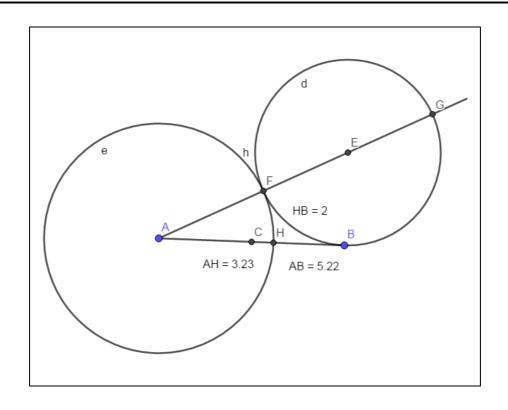
CIRCLE IN TRIANGLE

Find the incentre and the inscribed circle of a triangle

MENU	TOOL	PROCESS STEPS
		С
+	Angle Bisector	Constructthe angle bisector of angle BAC.
+	Angle Bisector	Construct the angle bisector of angle ABC.
• ^A	Intersect	Find the intersection of the two angle bisectors (point D). This is the incentre.
+	Perpendicular Line	Construct a line perpendicular to the line AB that goes through point D.
•A	Intersect	Find the intersection of the perpendicular line and the line AB (point E).
\odot	Circle with Center through Point	Construct a circle with centre at point D and radius DE. This is the inscribed circle.

GOLDEN SECTION

MENU	TOOL	PROCESS STEPS
	Segment	Draw a segment AB.
• ^A	Midpoint or Centre	Find the midpoint C of the segment AB.
\odot	Circle with Centre through Point	Click the B point to draw the circle with B point as centre and through point C.
+	Perpendicular Line	Click point B and AB segment to draw the perpendicular line.
• ^A	Intersect	Click the perpendicular line g and the circle B to find the intersection points E and D.
Left click on the perpendicular line g, then right click and uncheck the "show object" checkbox. Repeate the steps for the circle B.		
\odot	Circle with Centre through Point	Click the E point to draw the circle through point B.
	Ray	Click the A point to draw the ray through E point.
• ^A	Intersect	Click the AE ray and the E circle to find the inersection points F and G.

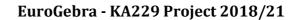


\odot	Circle with Centre through Point	Click the A point to draw the circle through point F.
• ^A	Intersect	Click the AB segment and the A circle to find the intersection point H.
4.	Distance or Length	Click the A, B points to messure the AB segment's lenght. Do the same for the AH and HB segments' lenghts.
Go to the "input" section on the left and insert $\frac{AB}{AH}$ " and then $\frac{AH}{HB}$ "		

Question: What do you notice about the two ratios "a" and "b" above.

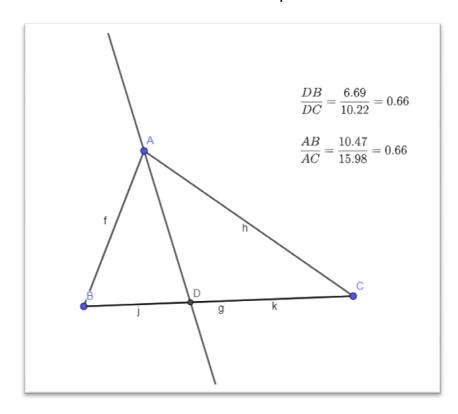
Explain your answer.

 $\frac{AB}{AH}$ = a and $\frac{AH}{HB}$ = b



INTERNAL BICECTORS THEOREM

MENU	TC	OOL	PROCESS STEPS
Segment	With this buttons create triangle ABC		
Angle Bisector	Create the angles A bisector clicking B,A,C points (with that order)		
Intersect	Create the intersect point D of the segment BC and the bisector		
Segment	Create the segment BD and DC		
	From Algebra section type j/k (creates a) and f/h (creates b)		
ABC Text	From Geometry section, create the following:	Text B	



ABC	Similarly create	Text	
ABC		B Serif LaTeX formula	
Text		\frac{AB}{AC}=\frac{f}{h}=_b	
		▼Advanced	
		Preview οβγ LaTeX formula	
		(empty box) A B C D E	
		F a b c	
		f g h i _	
		i b	
		OK CANCEL	

What do you notice?

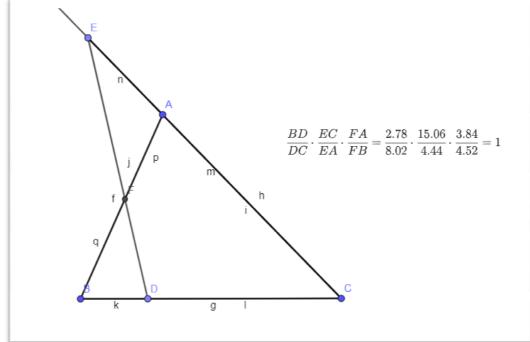
Try to discover a similar relation with the help of external bicector of A angle

ISOSCELES TRIANGLE

Isosceles triangle Construction with given base and givenline

MENU	TOOL	PROCESS STEPS
<u></u>	Segment	Draw a segment
	Line	Draw a linefromtwopoints C,D
$\overline{\cdot}$	Midpoint or center	Clickthe segment AB to findthemidpoint E
+	PerpedicularLine	Click E point and to the segment AB to draw
\overline{X}	Intersect	Clicktheperpedicularbisector and theCD line to findthepeak point of theisosceles triangle

EuroGebra - KA229 Project 2018/21


MENELAOS THEOREM

MENU	TOOL	PROCESS STEPS
Segment	Construct the triangle ABC	
•A Point	Create a point D inside the segment BC	
Ray	Create the ray CA	
• A Point	Create a point E on the ray CA outside of the segment AC	
Segment	Create the segment ED	
Intersect	Create the intersect point F of ED and AB	
Segment	Define the segments BD,DC,EC,EA,FA,FB (with this order)	
A III	$\frac{k}{\ell} \cdot \frac{m}{n} \cdot \frac{p}{q}$ Type: (that will give: a \rightarrow 1)	

EuroGebra - KA229 Project 2018/21

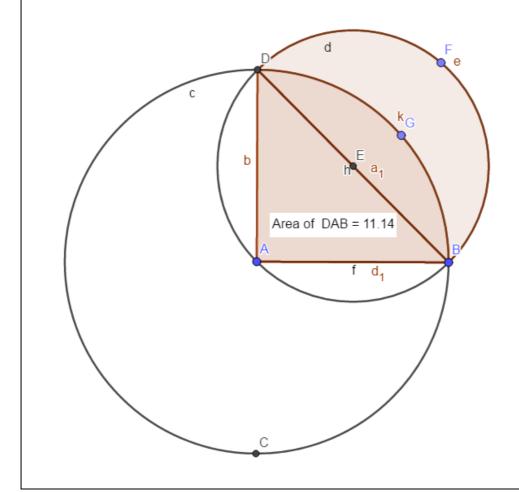
MENISCUS SQUARE

MENU	TOOL	PROCESS STEPS
\odot	Circle with Centre through Point	Draw a circle of centre A and radius AB.
	✓ Segment	Draw the segment AB.
1	Perpendicular Line	Click point A and AB segment to draw the perpendicular line g.
• ^A	Intersect	Click the perpendicular line g and the circle A to find the intersection points C and D.
	✓ Segment	Draw the segment DB.
• ^A	Midpoint or Centre	Click the D and then the B points to find the midpoint E.
\odot	Circle with Centre through Point	Click the E point to draw the circle through point B.
• ^A	• A Point	Select a random point F in semicircle DB , outside A circle.
• ^A	• A Point	Select a random point G in the convex arc DB, of A circle.
\odot	🖒 Circular Sector	Click the E point then B point and through point F , click the D point to shade the "e" sector.

4.	cm² Area	Click the "e" sector to messure its area. (This is the area of the semicircle EBFD)
	Polygon	Click the D, A, B and again D points to shade the DAB triangle.
∠ a	Area	Click the DAB to messure its area.
\odot	△ Circular Sector	Click the A point then B point and through point G, click the D point to shade the "k" sector.
4.	cm² Area	Click the "k" sector to messure its area. (This is the area of the circular sector ABGD)

Task 1: calculate the area of circular section EBGD, by subtracting the area of the triangle DAB from the circular sector ABGD.

Task 2: calculate the area of the meniscus DGBFD by subtracting the area of the circular section EBGD from the area of the semicircle EBFD.


Question: What do you notice about the area of the meniscus DGBFD and the area of the triangle DAB.

Explain your answer.

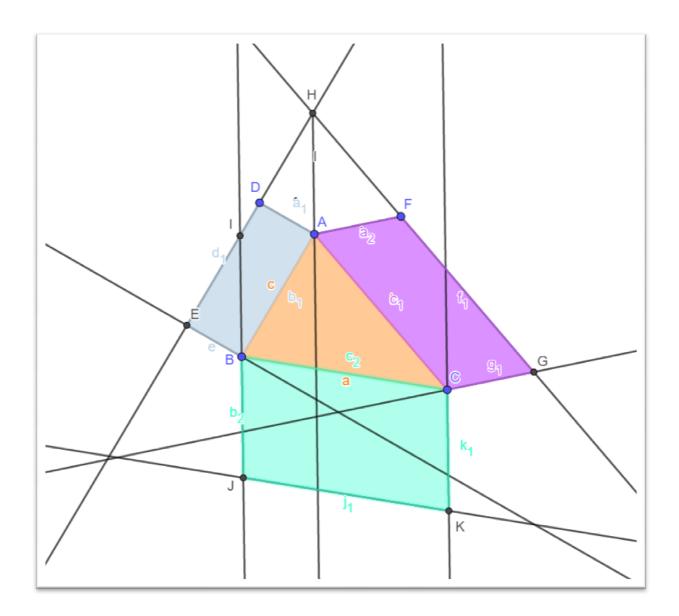
Area of DFBED - Area of DGBED = 17.5 - 6.36 = 11.14 = Area of DFBGD Meniscus = Area of DAB

Area of ADGBA – Area of DAB = 17.5 - 11.14 = 6.36 = Area of DGBED

PAPPUS'S AREA THEOREM

Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it. (Wikipedia)

MENU	TOOL	PROCESS STEPS
\triangleright	Polygon	Draw an arbitrary triangle ABC
	✓ Segment	From point A draw a segment AD outside and to the left of the triangle
1	Parallel Line	From point D draw a parallelline to AB From point B draw a parallellineto AD
• A	Intersect	Find the intersect point E for the 2 previous lines
	A CO	From point A draw a segment AF outside and to the right of the triangle
+	Parallel Line	From point F draw a parallel line to AC From point C draw a parallel line to AF
_A	Intersect	Find the intersect point G for 2 the previous lines
• ^A	Intersect	Find the intersect point H of the lines ED and GF
	✓ Ray	Draw the ray HA

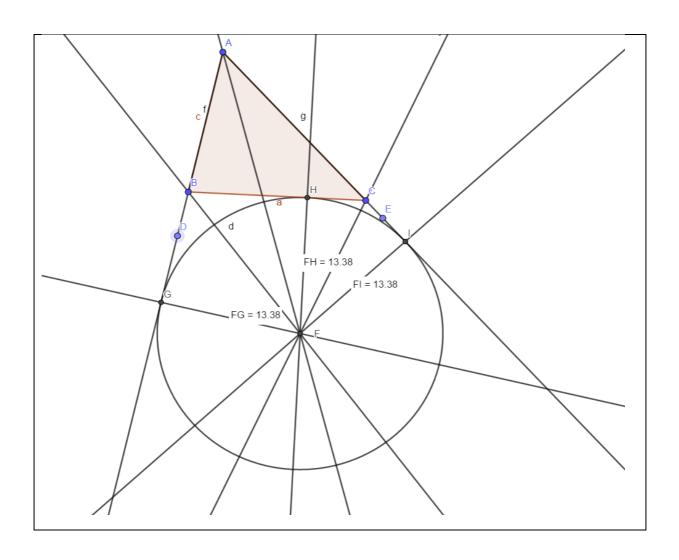

EuroGebra - KA229 Project 2018/21

+	Parallel Line	From point B draw parallel to segment HA From point C draw parallel to segment HA
\odot	Circle with Centre and Radius	Draw a cicle with center the point B and radius HA
• ^A	Intersect	Find the inetrsect point J of the circle and the parallel line to AH
Right click on circle and uncheck "show Object" to clear the circle		
1	Parallel Line	Draw a parallel line from point J to segment BC
• ^A	Intersect	Find the intersect point K between the parallel line from point J and the parallel line from the point C (Creating the parallelogram BJKC)
Can you prove that Area _{ABED} + Area _{AFGC} = Area _{BJKC} ?		

POINTS IN LANE

Reflect a point in a line

MENU	TOOL	PROCESS STEPS
		°C /
\odot	Circle with Centre through Point	Draw a circle with the center it at C and cutting the line at two points
• ^A	Intersect	Define the points that formed with intersection of circle and line with the intersection tool (E and F points)
\odot	Compasses	Drawtwo circles with radius equal to length ECand center E and F
• ^A	Kesiştir	Define the points that formed with intersection of circles that E and F-centered (G point)


THE PRESCRIBED CIRCLES

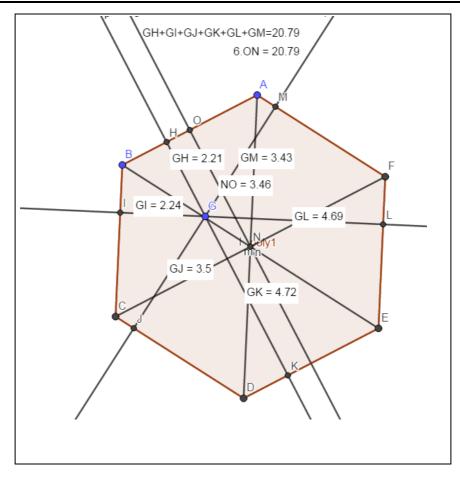
MENU	TOOL	PROCESS STEPS
	Polygon	Constract a random triangle ABC
	Ray	Construct the two rays from the point A by clicking points A ,B and A, C
• ^A	• ^A	Click a random point D on the ray AB and a random point E on the ray AC both outside the triangle
+	Angle Bisector	Constract the BAC, DBC and BCE angles' bisectors
• ^A	Intersect	Find the intersection point F of the three bisectors
1	Perpendicular Line	Draw the perpenticular lines from point F to the segments AB,BC,AC
• ^A	Intersect	Find the intersection points between perpenticulars and the segments AB ,BC,AC (points G,H and I)
	Distance or Length	Find the lengths of the segments FG, FH and FI
 Question1:Can you explain why the lengths are equal? Question 2:What can you say about the points G,H,I? 		
\odot	Circle through 3 Points	Click the points G, H and I

This is the (F,FG) prescribedcircle. Are there any others?

REGULAR POLYGON

A regular polygon and the sum of an internal point distances from its sides

MENU	TOOL	PROCESS STEPS
	Regular Polygon	Draw two points A and B and select 6 vertices to draw a regular hexagon.
	✓ Segment	Click the A, D points, the B, E points and the C, F points to draw the corresponding segments.
• ^A	A Point	Click to make the interior point G.
+	Perpendicular Line	Click the G point and the AB side to draw the perpedicular line to AB and DE. Repeate, clicking the G point and the BC side and once more, clicking the G point and CD side, so that the perpedicular lines intersect the sides at their internal points.
• ^A	Intersect	Click, in succession, the perpendicular line to AB side and AB side, the perpendicular line to BC side and BC side, the perpendicular line to CD side and CD side, the perpendicular line to DE side and DE side, the perpendicular line to EF side and EF side, and the perpendicular line to FA side and FA side, to find the H, I, J, K, L and M points.
• ^A	Intersect	Click AD and BE segments to find the intersection point N.


+	Perpendicular Line	Click the N point and AB side to draw the perpendicular line.
• ^A	Intersect	Click the last perpendicular line and AB side to find the O point.
4.	Distance or Length	Click the G,H points, G,I points, G, J then G, K, then G, L then G, M and N, O points to messure the corresponding lengths

Go to the "input" section on the left and insert "GH + GI + GJ + GK + GL + GM =", click "enter" and then " 6 X NO ="

$$GH + GI + GJ + GK + GL + GM = a$$

and $6 \times NO = b$

Question: Prove the equality a = b.

Task: Make the same procedure on a 7 vertices regular polugon.

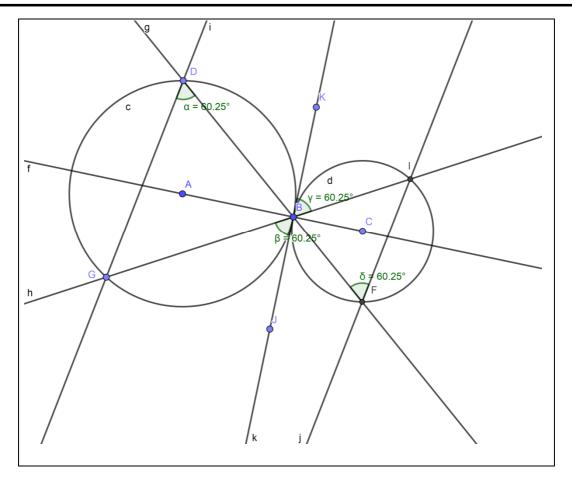
SQUARE CONSTRUCTION

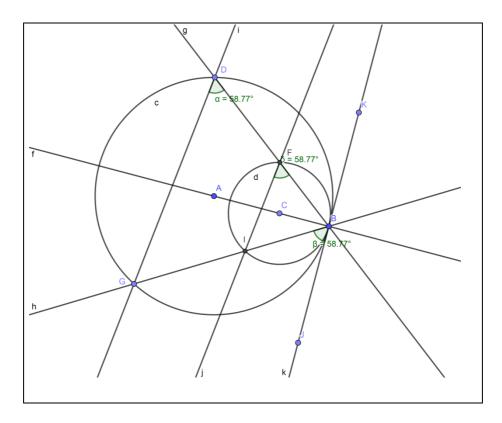
Square Construction with given side length

MENU	TOOL	PROCESS STEPS
a	Segment	Draw a segment AB
	withgivenlength	fromthe point A
		withgivenlenghte.g. 10
	Rotatearound point	1. Checkthe segment AB
		2. Clickthe point A
		3. Write 90 ⁰ degrees
	Rotatearound point	1. Checkthe segment
		A'B'
		2. Clickthe point B'
		3. Write 90 ⁰ degrees
<u>.</u> .	Rotatearound point	1. Checkthe segment
		A´´B´´
		2. Clickthe point A''
		3. Write 90 ⁰ degrees

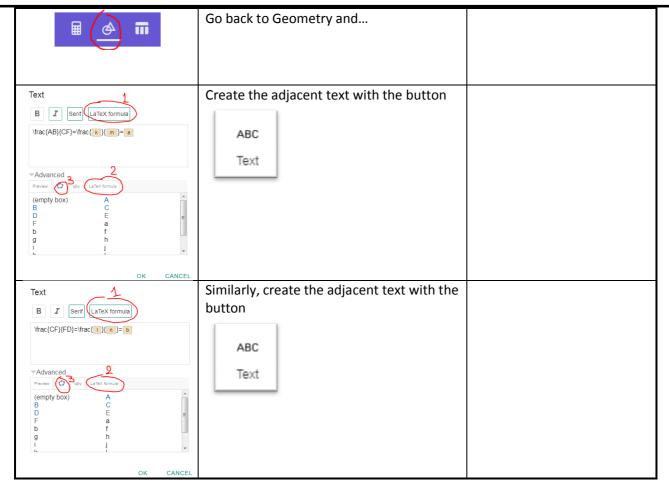
TANGENT CIRCLES

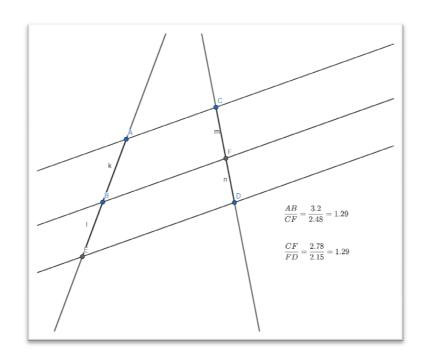
MENU	TOOL	PROCESS STEPS
\odot	Circle with Centre through Point	Draw a circle with center point A through point B.
	Line	Draw the AB line.
• ^A	• ^A	Select a random point C on AB line. (out of circle A)
\odot	Circle with Centre through Point	Draw another circle with center point C through point B. (Let the second circle C have different radius from circle A)
• ^A	• ^A	Select a random point D on A circle. (D, A, B non- consistently)
	Line	Draw the DB line.
• ^A	Intersect	Click the B circle and the DB line to find the intersection point F. (There will be another intersection point E identifed with B point. Click the grey dot on the left list, so only B point appears)
• ^A	• A Point	Select another random point G on A circle. (G, A, B non-consistently)
	Line مر	Draw the GB line.


EuroGebra - KA229 Project 2018/21



• ^A	Intersect	Click the B circle and the GB line to find the intersection point I. (Again there will be another intersection point H identifed with B point. Click the grey dot on the left list, so only B point appears)
	Line	Draw the DG line.
prof.	Line	Draw the IF line.
+	Perpendicular Line	Click the B point and the AB line, to draw the perpendicular line.
Question: What do you notice about the lines DG and IF. Explain your answer.		
Task : Create your own procedure for the same problem if the circles are internally tangent.		


THALES THEOREM

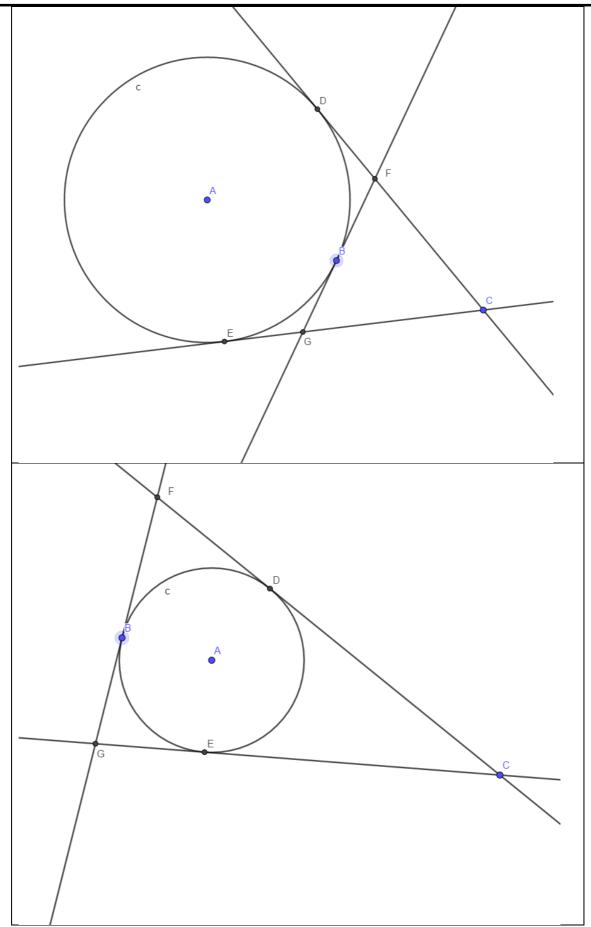

MENU	TOOL	PROCESS STEPS
Line	Create a straight line of points A, B	
, pur line	Similarly, a second line that is different from the first line, of points C, D	
Line	From point A, make a straight line topoir C	nt
Parallel Line	From Point B make a parallel to the straight AC	
Parallel Line	From point D, make a parallel to the straight AC	
Intersect	With this button, create all the points of intersection of the lines that are not defined (from left to right) so that that the points A, B, E are in the same line and als the points C, D F.	ne
Segment	Define all straight parts AB, BE, CF and FI	
	$a = \frac{k}{m} \text{and} b = \frac{\ell}{n}$	

EuroGebra - KA229 Project 2018/21


THE RECTANGULAR BISECTORS

MENU	TOOL	PROCESS STEPS
• ^A	• A Point	Draw three point A,b and C (non co- linear)
	✓ Segment	Construct the segments AB and BC
+	Parallel Line	Click point B and segment AB and then point A and segment BC to construct the recragular
• ^A	Intersect	Find the forth apex D of the rectagular
Right click on each one of the parallels and uncheck the < <show object="">> button</show>		
	✓ Segment	Construct the segments AD and DC
+	Angle Bisector	Construct the angle bisectors of all four angles of the rectagular
• ^A	Intersect	Find the intersection points of the bisectors (Points E,F,G and H)
 Question1: What kind of a shape is EFGH ? Explain Question2: If all the bisectors meet to the same point , what kind of shape 		

 Question2: If all the bisectors meet to the same point, what kind of shape would be the ABCD rectagular?

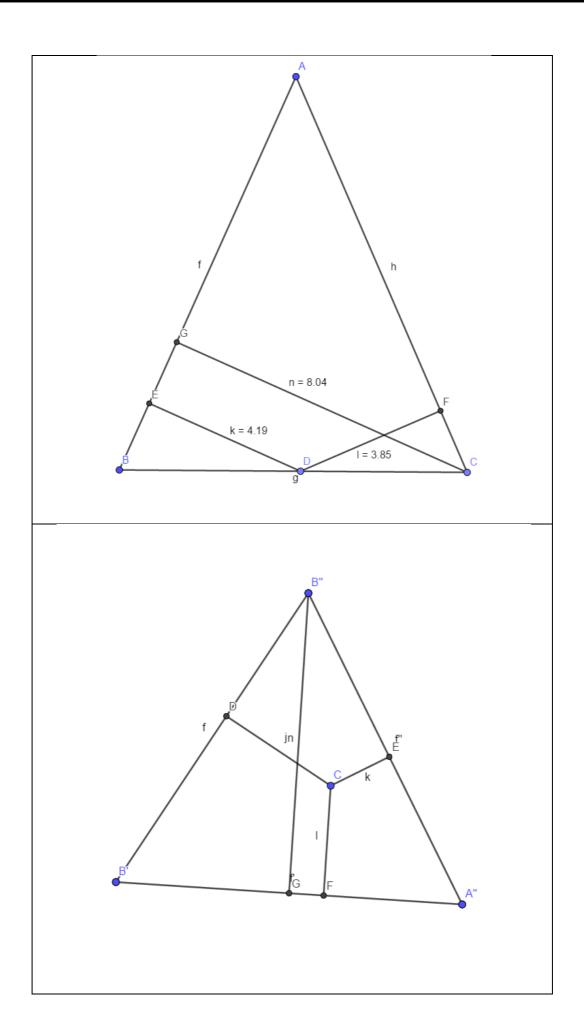

THE RELATION OF TRIANGLES PERIMETER AND TANGENTIAL SEGMENTS

MENU	TOOL	PROCESS STEPS
• ^A	_A	Click twice and draw point A and B
\odot	Circle with Centre through Point	Construct the circle with center A and trough point B
• ^A	• A	Click a point C outside of the circle (point B must be between A and C)
+		Constract the tangents from point C to the circle by clicking point C and the circle
+	Tangents	Constract the tangent from point B to the circle by clicking point B and the circle
• ^A	Intersect	Find the intersection points between tangents and circle (points D and E)
• ^A	Intersect	Find the intersection points between tangent from point B and tangential segments CD and CE

- Question1: Find the relation between triangles CFG perimeter and the lenght of the sengemt CD
- Question 2: If the point B belongs to the non-convex arc DE, find the relation of the triangles perimeter and the lengths of the segments CD and FG

THE SUM OF THE DISTANCES OF A RANDOM POINT INSIDE OF AN ISOSCELES TRIANGLE IS CONSTANT

TRIANGLE IS CONSTANT		
MENU	TOOL	PROCESS STEPS
prof.	✓ Segment	Draw the segment AB
\odot	Circle with Centre through Point	Draw the circle with center A and through point B
• ^A	• A Point	Click the point C on the circle
	✓ Segment	Construct the segments BC and CA
Right click on the circle and uncheck the < <show object="">> button</show>		
• ^A	• A Point	Draw a random point D on the segment BC
+	Perpendicular Line	Construct the perpendiculars from point D to the AB and AC segments
• ^A	Intersect	Find the intersection points of perpendicular lines with the segments AB and AC (Points E and F)
Right click on the perpendiculars and uncheck the < <show object="">> button</show>		
pro	✓ Segment	Draw the segments DE and DF


+	Perpendicular Line	Construct the perpendicularfrom point C to the AB segment
• ^A	Intersect	Find the intersection point of perpendicular line with the segments AB (Point G)
Right click on the perpendicular and uncheck the < <show object="">> button</show>		
	Segment	Draw the segment CG
4 °	Distance or Length	Measure the lenghts of the segments DE,Df and CG

Question1: Can you find the relation between the lengths of segments?

Question2: What happens if the initial triangle is equilateraland D is an inner point of the triangle ?

