EUROGEBRA WORKSHEETS

3D Geometry

Quadratic (In)Equations

EUROGEBRA WORKSHEETS

Introduction:

These worksheets were created within the Erasmus + project, Eurogebra. Worksheets are in the field of mathematics and use the Geogebra program for individual mathematical tasks. The purpose is to use the program when teaching and explaining problems in mathematics and thus to approach the issue more clearly. Worksheets are in the form of specific instructions and tools that will guide us to solve various tasks. In this way, students will get closer to a better understanding and modification of the given examples. Individual groups of worksheets can be combined with each other and create new subgroups according to the issues discussed. Some examples are followed by the solution of examples and free sheets for student notes.
Worksheets respect pedagogical documents related to the subject of mathematics. When working with worksheets, it is necessary to cooperate with teachers and coordinate their work.
In terms of content, we focused on geometric examples, where you can effectively solve problems and modify them in various ways. By formulating the tasks, we lead the students to understand the assigned tasks and to solve the tasks according to the individual steps in the worksheets.

EUROGEBRA WORKSHEET

BEZIER CURVE

$\left.\begin{array}{|l|l|l|}\hline \text { MENU } & \text { TOOL } & \text { PROCESS STEPS }\end{array} \quad \begin{array}{c}\text { In Settings set Labelling to All New Objects }\end{array}\right]$| Create a segment $A B$ (a) |
| :---: |

with (n - i)-th element of I list

You can move points A, B and C to change the shape of the Bezier Curve. Use the slider to change the number of segments.

Hide the lebels of segments and points.

Create a new tool called Bézier Curve
Choose all the lists as Output objects.

File

Edit
Perspectives
View
Settings

* Tools
*

Customise Toolbar
Create New Tool

* Manage ToolsHelp \& Feedback
Sign in

EUROGEBRA WORKSHEET

CARTESIAN EQUATION OF A PLANE

MENU	TOOL	PROCESS STEPS
$=1$	Create four sliders	Create four sliders a, b, c and d. The slider will default to a range of -5 to 5 .
		Type ax+by+c=d in the algebra view window
	Create three sliders	Create three sliders d,f and g. The slider will default to a range of -5 to 5 . Do not use e as Geogebra thinks it is the Euler number
	Plot a 3D coordinate point in the algebra view	Type ($\mathrm{d}, \mathrm{f}, \mathrm{g}$) in the algebra view window
	Click on the parallel plane icon on the geometry menu	Select point D and the plane($\mathrm{A}, \mathrm{B}, \mathrm{C}$)

,"solution image"

Questions:

1. Write down the cartesian equation of a plane tha passes through the origin. Generalise your observation. Will be of the form $n 1 x+n 2 y+n 3 z=0$
2. Write down the cartesian equation of a plane that is parallel to plane p. Generalise your observation. Will have the same n1,n2,n3 values but will not equal to the same number.

EUROGEBRA WORKSHEET
MIN AND MAX VALUES OF A QUADRATIC FUNCTION IN A GIVEN INTERVAL

		Input. .	In the input bar type in: A = Intersect(g, eq1)
		Input	In the input bar type in: B = Intersect(g, eq2)
		Inpu	In the input bar type in: $\mathrm{C}=\operatorname{MIN}(\mathrm{g}, \mathrm{~d}, \mathrm{e})$
		Input	In the input bar type in: $D=\operatorname{MAX}(\mathrm{g}, \mathrm{~d}, \mathrm{e})$
		Input	In the input bar type in: $p=-\frac{b}{2 a}$
		Input	In the input bar type in: $q=f(p)$
		Inpu	In the input bar type in: $k=f(d)$
		Inpu	In the input bar type in: $m=f(e)$
		Inpu	In the input bar type in: $W=(p, q)$
		Inpu	In the input bar type in: $\begin{gathered} y_{-} \max =I f(d \leq p \leq e, \operatorname{Max}(k, \operatorname{Max}(m, q)), \\ \operatorname{Max}(k, m)) \end{gathered}$
		Inpu	In the input bar type in: $\begin{gathered} y_{-} \min =\text { If }(d \leq p \leq e, \operatorname{Min}(k, \operatorname{Min}(m, q)), \\ \operatorname{Min}(k, m)) \end{gathered}$
$\stackrel{a=2}{\square}$	ABC Text		Insert dynamic text: $f(d)=k \quad f(e)=m$

$\stackrel{a}{\square} \stackrel{2}{\square}$	(Check Box	Insert a check box: Function value at the ends of the interval:, which will show/hide the dynamic text from the previous step
$\stackrel{a}{\square}$	ABC Text	Insert dynamic text: $W=(p ; q)$ Set a condition to show this object: $i \wedge a \neq 0$
$\stackrel{a}{\square}$	(Check Box	Insert a check box: Vertex of a parabola:, which will show/hide the dynamic text from the previous step
$\stackrel{a}{\square} \stackrel{2}{\square}$	ABC Text	Insert dynamic text: $y_{_}\{\min \}=y_{-}\{\min \} \quad y_{-}\{\max \}=y_{_}\{\max \}$
$\stackrel{a}{\square} \stackrel{2}{\square}$	(Check Box	Insert a check box: MIN and MAX values in given interval:, which will show/hide the dynamic text from the previous step
$\xrightarrow{a=2}$	ABC Text	Insert text: no vertex Set a condition to show this object: $\mathrm{i} \wedge \mathrm{a} \stackrel{?}{=} 0$
$\stackrel{a}{\square} \stackrel{2}{\square}$	ABC Text	Insert dynamic text: Examined interval:
$\stackrel{a}{\square} \stackrel{2}{ }$	ABC Text	Insert dynamic text: $f(x)=$
$\stackrel{a}{\square} \stackrel{2}{\square}$	ABC Text	Insert dynamic text: $x \in\langle d ; e\rangle$
$\stackrel{a}{\square} \stackrel{2}{ }$	ABC Text	Insert text: Set the parameters of the quadratic function:
	Input...	In the input bar type in: $z(x)=\text { If }(d \leq x \leq e, g(x))$ Set a condition to show this object: j

EUROGEBRA WORKSHEET

QUADRATIC EQUATION

EUROGEBRA WORKSHEET

QUADRATIC EQUATIONS

MENU	TOOL	PROCESS STEPS
Write in the input cell the function „ $x^{2 "}$ to create the curve f. The curves' name is parabola. "the $\mathrm{y}=\mathrm{x}^{2}$ parabola"		
\square	$\xrightarrow{\text { a }=2}$ Slider	Cilck on the geogebra board to define a slider „a" , set $\min =-5$ and $\max =5$.
Write in the input cell the function „a• ${ }^{2 \prime}$ to create the curve g.		
Left click on the „a" slider's dot and move it , to see the relation between the two curves.		
- A	$<$ Intersect	Click on the g curve and the $x^{\prime} x$ axis to see the intersection point A. The A point is the extreme point of the parable.
1st task: What is the solution of the equation $\mathrm{ax}^{2}=0, \mathrm{a} \neq 0$. (show the solution in the graph)		
$\stackrel{a}{\square}$	$\xrightarrow{\text { a }=2}$ Slider	Cilck on the geogebra board to define a slider „c" , set min =-5 and $\max =5$.
Write in the input cell the function „a• ${ }^{2}+\mathrm{c} \mathrm{\prime} \mathrm{\prime}$ to create the curve h.		
Left click on the „ c " slider's dot and move it , to see the relation between the g and h curves.		

$\cdot A$	¢ Intersect	Click on the h curve and the $x^{\prime} x$ axis to see the intersection points B and C . Then click again the h parable and the $y^{\prime} y$ axis to create the D point which is the extreme point of the h parable.
Notice that, if $a>0$, then the extreme point A and D are minimum, if $a<0$, then the extreme point A and D are maximum.		
2nd task: What is the solution of the equation $a x^{2}+c=0, a \neq 0$. (show the solution in the graph)		
$\stackrel{a}{\square}$	$\xrightarrow{\text { a }=2}$ Slider	Cilck on the geogebra board to define a slider „b", set min =-5 and $\max =5$.

You can delete the first two parables and write in the input cell the function „a• $x^{2}+b x+c "$ to create the new curve f.

| $\bullet A$ | Click on the f parable and the $x^{\prime} x$
 axis to see the intersection point A
 and E. |
| :---: | :---: | :---: |

Write in the input cell the coordinates „(-b/2a, $f(-b / 2 a))$ " and then „enter".
The F point appears on the f parable and this point is, always, the extreme point of any parable f .

3rd task: What is the solution of the equation $a x^{2}+b x+c=0, a \neq 0$. (show the solution in the graph) of the European Union

EUROGEBRA WORKSHEET

SHOW THE SOLUTIONS TO A QUADRATIC INEQUALITY

EUROGEBRA WORKSHEET

QUADRATIC INEQUALITIES

MENU	TOOL	PROCESS STEPS
$\xrightarrow{a=2}$	$\xrightarrow{\mathrm{a}=2}$ Slider	Cilck on the geogebra board to define a slider „a" , set min =-5 and $\max =5$.
$\stackrel{a}{\square}$	$\xrightarrow{\text { a }=2}$ Slider	Cilck on the geogebra board to define a slider „b" , set min =-5 and $\max =5$.
$\stackrel{a}{\square}$	$\xrightarrow{\mathrm{a}=2}$ Slider	Cilck on the geogebra board to define a slider „c" , set min =-5 and $\max =5$.

Write in the input cell the function „a• $x^{2}+b x+c "$ to create the parabola f.

Move the sliders so that the parabola f intersects the x Axis

A	Click on the f parabola and the $x^{\prime} x$ axis to see the intersection points A and B.

Write in the input cell, the inequality,$f(x)>0 "$. Then "enter" and the set " d " appears on the left column.

Write in the input cell „if $(\mathrm{d}, 0)$ " to color the x Axis section that solves the inequality .

1st task: What is the solution of the inequality $x^{2}-4 x+3>0$.

```
    (show the solution in the graph)
```

	Write in the input cell, the inequality $„ f(x)<0 "$. Then "enter" and the set " e " appears on the left column.
Write in the input cell , if $(\mathrm{e}, 0)$ " to color the x Axis section that solves the inequality . (use different color, from the settings, for the " e " set)	
2nd task :	What is the solution of the inequality $-x^{2}+5 x-6<0$. (show the solution in the graph)
3rd task :	What is the solution of the inequality $\quad 2 x^{2}+4 x+2>0$. (show the solution in the graph)
4th task :	What is the solution of the inequality $-x^{2}-x-1 \geq 0$. (show the solution in the graph)
5th task :	What is the solution of the inequality $\quad x^{2}-4>0$. (show the solution in the graph)
6th task :	What is the solution of the inequality $-2 x^{2} \leq 0$. (show the solution in the graph)

EUROGEBRA WORKSHEET No
TITLE : Roots of quadratics

MENU	TOOL	PROCESS STEPS
		In the input bar enter $y=x^{\wedge} 2+b x+c$
$\hat{\theta}$	Find the roots of an equation	Click on the roots button
		Change the values of b and c and answer the questions below
		In the input bar enter $y=p x^{\wedge} 2+q x+r$
θb	Find the roots of an equation	Click on the roots button

Questions:

1. Add the roots of the equation. Do you notice a link between the roots and b ? Add the roots together and negate your answer. This will be the value of b.
2. Multiply the roots together. Do you notice a link between the roots and c? Multiply the roots together and this will be the value of c.
3. Change values of b and c. Are the links still valid? Yes
4. Generalise your observations. The sum of the roots equals -b and the product of the roots equals c
5. Can you see the connections when you use $y=p x^{\wedge} 2+q x+r$? Generalise your observations The sum of the roots equals $-q / p$ whilst the product of the roots equals r / p

EUROGEBRA WORKSHEET

ROOTS OF FUNCTIONS

MEN U		TOOL		PROCES S STEPS

Questions:

1. Set $b=1$ and $c=-2$ by moving the slider. What is the equation of the function? $y=x^{2}+1 x-2$
2. Set $p=-1$ and $q=2$ by moving the slider. What is the equation of the function? $y=(x-1)(x+2)$
3. The two graphs will now coincide. What does this tell you about the two equations?They are the same. When you expand the brackets the equation will be the same as 1.
4. The roots of a quadratic equation are where the graph crosses the x-axis. This gives a y value of 0 . How is this linked to the values of p and q above? If you know where they cross the x axis you can work out p and q. This will give a y value of 0 .
5. Is there a relationship so that two graphs will always be the same even though you change the values?Yes - if you know where they cross the x axis you can work out p and q. You can then expand to find the equation in the form $x^{2}+b x+c$.
6. Can you have a quadratic equation without any roots? Yes - the graph would not cross the $x-$ axis based on the previous definition
7. The answer to question 6 is no. How can this be true? did not realise you can use complex numbers to represent roots of an equation.

EUROGEBRA WORKSHEET

SHOW THE SOLUTIONS TO A QUADRATIC INEQUALITY

EUROGEBRA WORKSHEET

SHORT MULTIPLICATION FORMULAS

| MENU | TOOL | PROCESS STEPS |
| :--- | :--- | :--- |$|$| In the Graphics view hide the grid and both axes |
| :---: |

		Go to Settings of this object->Advanced, in Condition to show object type in: $f \neq g \wedge c$
$\stackrel{a=2}{\square}$	OK Button	Insert a button: Caption: new example GeoGebra script: UpdateConstruction() $c=$ false $d=$ false $g(x, y)=0$
		Button
		Caption:
		new example
		GeoGebra Script:
		UpdateConstruction 0 $\mathrm{c}=$ false d=false $g(x, y)=0$
		OK Cancel

End result:

Square of a sum or square of a difference
expand the formula $\quad(x-5 y)^{2}=$ $x^{2}+10 x y+25 y^{2}$

check
wrongshow correct answer

$$
(x-5 y)^{2}=x^{2}-10 x y+25 y^{2}
$$

new example

